S.No. 8017

## **24DPBA07**

(For the candidates admitted from 2024–25 onwards)

## M.B.A. DEGREE EXAMINATION, AUGUST 2025

## Second Semester

## APPLIED OPERATION RESEARCH

Time: Three hours

Maximum: 75 marks

PART A —  $(10 \times 2 = 20 \text{ marks})$ 

Answer ALL questions.

- 1. What is operation research?
- 2. List down the advantages of model in operation research.
- 3. What is linear programming?
- 4. Define duality in LPP.
- 5. What do you meant by degeneracy in transportation problem?
- 6. What is north west corner rule?
- 7. Define critical path.
- 8. What is network scheduling?
- 9. What is game theory?
- 10. What is saddle point?

PART B —  $(3 \times 5 = 15 \text{ marks})$ 

Answer any THREE questions.

- 11. Explain the characteristics of operation research.
- 12. Write the steps involved in solving LPP using graphical method.
- 13. State the difference between transport and assignment problems.
- 14. Differentiate between PERT and CPM.
- 15. Discuss the characteristics of game theory.

PART C — 
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

16. (a) Explain the application of operation research in functional area of management.

Or

- (b) Discuss the various advantages of operation research.
- 17. (a) Discuss the assumptions of LPP.

Or

(b) Solve the following L.P.P by using graphical method.

Maximize  $Z = 2x_1 + x_2$ 

Subject to

$$3x_1 + 2x_2 \le 12$$

$$x_1+1.5x_2 \leq 6$$

and 
$$2x_1 + x_2 \le 10$$

$$x_1, x_2 \ge 0$$

18. (a) Explain the various methods of finding initial basic feasible solution in transportation method.

Or

(b) Find the initial basic feasible solution for the transportation problem by using NWC method.

| 1  | 2  | 6  | 17 |
|----|----|----|----|
| 0  | 4  | 2  | 12 |
| 3  | 1  | 5  | 11 |
| 10 | 15 | 15 | •  |

19. (a) Explain the various objectives of job shop scheduling.

Or

(b) Draw the network for the following project:

Activities: PQRSTUWXY

Immediate predecessor: - P P - S Q,R,T U T W,X

20. (a) Solve the following pay-off matrix.

Player B

 $\begin{array}{cccc} & & B_1 & & B_2 \\ Player\,A & A_1 & & 3 & & 0 \\ & A_2 & & 0 & & 1 \end{array}$ 

Determine the strategy for A, B value of the game.

Or

(b) Explain Laplace criterion in business decision theory.